Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Sci ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480904

ABSTRACT

Dissolving the lipid droplets in tissue section with alcohol during a hematoxylin and eosin (H&E) stain causes the tumor cells to appear like clear soap bubbles under a microscope, which is a key pathological feature of clear cell renal cell carcinoma (ccRCC). Mitochondrial dynamics have been reported to be closely associated with lipid metabolism and tumor development. However, the relationship between mitochondrial dynamics and lipid metabolism reprogramming in ccRCC remains to be further explored. We conducted bioinformatics analysis to identify key genes regulating mitochondrial dynamics differentially expressed between tumor and normal tissues and immunohistochemistry and Western blot to confirm. After the target was identified, we created stable ccRCC cell lines to test the impact of the target gene on mitochondrial morphology, tumorigenesis in culture cells and xenograft models, and profiles of lipid metabolism. It was found that mitofusin 2 (MFN2) was downregulated in ccRCC tissues and associated with poor prognosis in patients with ccRCC. MFN2 suppressed mitochondrial fragmentation, proliferation, migration, and invasion of ccRCC cells and growth of xenograft tumors. Furthermore, MFN2 impacted lipid metabolism and reduced the accumulation of lipid droplets in ccRCC cells. MFN2 suppressed disease progression and improved prognosis for patients with ccRCC possibly by interrupting cellular lipid metabolism and reducing accumulation of lipid droplets.

2.
J Endourol ; 37(12): 1241-1247, 2023 12.
Article in English | MEDLINE | ID: mdl-37756365

ABSTRACT

Introduction: Percutaneous nephrolithotomy (PCNL) is the recommended treatment for 2-4-cm renal stones. Minimally invasive PCNL (MPCNL) with ≤22F sheath was frequently used instead of standard PCNL. MPCNL uses pressurized irrigation to flush out stone fragments through a conventional nephrostomy sheath (cNS), which may result in higher intrarenal pressure (IRP) and longer operating time. The novel vacuum-assisted nephrostomy sheath (vaNS) was developed to mitigate higher IRP and to facilitate stone removal. It might improve the performance of MPCNL. This prospective and randomized trial compares these two sheaths. Materials and Methods: In total, 120 patients with 2-4-cm renal stones were accrued in six tertiary medical centers with equal numbers in 2021. In total, 120 patients underwent mPCNL, 60 using 18F cNS and 60 using 18F vaNS, in a prospective and randomized assignment. The primary outcome measurement is decrease in IRP. The secondary outcome is efficacy in stone retrieval. Results: The IRP was lower with vaNS than with cNS: mean IRP during lithotripsy was 12.0 ± 2.7 mm Hg with vaNS vs 20.4 ± 6.0 mm Hg with cNS, p = 0.000. IRP duration ≥30 mm Hg was shorter with vaNS than with cNS (6.7 ± 7.4 seconds vs 113.4 ± 222.7 seconds, p = 0.001). vaNS has shorter stone removal time (26.9 ± 14.3 minutes vs 35.7 ± 11.8 minutes, p = 0.000). Stone extraction rate was higher (166.4 ± 88.1 mm3/min vs 90.4 ± 31.7 mm3/min, p = 0.000). Stone grasper usage was less (1.4 ± 2.6 vs 11.9 ± 9.7, p = 0.000). vaNS maintained the safety profile. Blood loss, creatinine changes, perioperative complications, and hospital stays were the same in both groups, all p > 0.05. Conclusion: MPCNL for stones 2-4 cm using vaNS has shorter stone removal time, higher stone extraction rate, and less use of stone extractor. vaNS is superior to cNS at reducing IRP and is associated with improved stone free rates at 3 days but not at 30 days postoperatively. The trial was registered with Chinese Clinical Trial Registry (ClinicalTrials.gov, NCT ChiCTR2000039681).


Subject(s)
Kidney Calculi , Nephrolithotomy, Percutaneous , Nephrostomy, Percutaneous , Humans , Prospective Studies , Treatment Outcome , Kidney Calculi/surgery
3.
ACS Appl Mater Interfaces ; 12(41): 46788-46796, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32935962

ABSTRACT

Optical microcapsules encapsulating optical materials inside a symmetric spherical confinement are significant elements for the construction of optical units and the integration of optical arrays. However, the multiple stimuli-responsive characteristic of optical microcapsules still remains a challenge due to the insuperable physical barrier between the optical material core and the outside shell and the lack of effective mechanisms to trigger the dynamic switch of the encapsulated optical materials. Inspired by the dual-mode optical modulation of chameleon skins, a novel biomimetic binary optical microcapsule that combines the visible light reflection of chiral nematic liquid crystals and photoluminescence emission of rare-earth complexes is assembled by microfluidic emulsification and interfacial polymerization. The reflected color, fluorescent intensity, and size of the optical microcapsules are facilely controlled in the microfluidic chip by adjusting the composition and flow rate of the injected fluids. Most importantly, the biomimetic binary optical microcapsules demonstrate three reversible responsive behaviors, thermotropic reflection evolution, temperature-dependent fluorescence emission, and Fredericks electro-optical response. The bioinspired multiple stimuli-responsive optical microcapsules enabled by microfluidics provide a templated strategy to manufacture the next generation of intelligent optical units and to achieve the dynamic response of hybrid photonic devices.


Subject(s)
Biomimetic Materials/chemistry , Liquid Crystals/chemistry , Microfluidic Analytical Techniques , Biomimetic Materials/chemical synthesis , Capsules/chemistry , Fluorescence , Molecular Structure , Optical Phenomena , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...